Meta-Structure Transformation Model for Statistical Machine Translation
نویسندگان
چکیده
We propose a novel syntax-based model for statistical machine translation in which meta-structure (MS) and meta-structure sequence (SMS) of a parse tree are defined. In this framework, a parse tree is decomposed into SMS to deal with the structure divergence and the alignment can be reconstructed at different levels of recombination of MS (RM). RM pairs extracted can perform the mapping between the substructures across languages. As a result, we have got not only the translation for the target language, but an SMS of its parse tree at the same time. Experiments with BLEU metric show that the model significantly outperforms Pharaoh, a state-art-theart phrase-based system.
منابع مشابه
A new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملLong-distance hierarchical structure transformation rules utilizing function words
In this paper, we propose structure transformation rules for statistical machine translation which are lexicalized by only function words. Although such rules can be extracted from an aligned parallel corpus simply as original phrase pairs, their structure is hierarchical and thus can be used in a hierarchical translation system. In addition, structure transformation rules can take into account...
متن کاملMachine Translation by Modeling Predicate-Argument Structure Transformation
Machine translation aims to generate a target sentence that is semantically equivalent to the source sentence. However, most of current statistical machine translation models do not model the semantics of sentences. In this paper, we propose a novel translation framework based on predicate-argument structure (PAS) for its capacity on grasping the semantics and skeleton structure of sentences. B...
متن کامل